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Abstract: In modern electronic warfare, cognitive radar with knowledge-aided waveforms would
show significant flexibility in anti-interference. In this paper, a novel method, named particle
swarm-assisted projection optimization (PSAP), is introduced to design phase-coded waveforms with
multi-level low range sidelobes, which mainly considers the stability for randomized initialization
under the unimodular constraint. Firstly, the mathematical problem corresponding to avoid the
range sidelobe masking from multiple non-cooperative targets or interference is formulated by giving
different threat levels. Then, based on the alternating direction decomposition idea, the original
problem is divided into triple-variable ones where these non-linear approximations can be solved
via alternating projections along with FFT. Furthermore, the PSAP method with swarm intelligence,
learning factor, and particle-assisted projection could ensure the optimization convergence in a paral-
lel way, which could relax the non-convex constraint and enhance the global exploiting performance.
Finally, simulations for several typical scenarios and numerical results are all provided to assess the
waveforms generated by PSAP and other prevalent ones.

Keywords: cognitive radar; waveform design; range sidelobe suppression; particle swarm-assisted
projection; FFT

1. Introduction

Waveform diversity aided by high-performance radar hardware has received consid-
erable attention and even made a great step forward to cognitive radar (CR) [1–3]. Most
radars transmit a modulated waveform and then use some type of matched filter (MF) to
enhance the signal-to-noise ratio (SNR) of the return echo. In mathematical sense, the MF
output is usually the convolution between the received signal and the time-reversed replica
of the transmitted signal, which is also regarded as the aperiodic auto-correlation [4–6].
Generally, to suppress range sidelobes which might obscure small targets of interest (espe-
cially, some dot targets or low RCS target) and further improve the anti-interference ability,
the transmitting waveforms with desirable auto-correlation property are imperative by
using some prior information [7–10]. Moreover, in engineering, the constant modulus (CM)
of waveform (in most cases, i.e., unimodular property) could maximize the transmitter’s
efficiency, but also makes the mathematical problem of generating waveform be more
non-convex [11–13].

In the past 10 years, to achieve waveforms with ideal range sidelobes, minimizing
integrated sidelobe level (ISL) and weighted integrated sidelobe level (WISL) have been de-
veloped as the classical metrics [14–16]. Therein, typical methods, such as cyclic algorithm
new (CAN) [4], iterative spectral approximation algorithm (ISAA) [12], coordinate descent
method (CD) [15], majorization minimization (MM) [16], weighted CAN (WeCAN) [17],
alternating direction method of multipliers (ADMM) [18,19], etc., have also been presented
and have received much attention. Note that, for mathematical problems under convex
constraints, CANs could give some asymptotic convergence and make a big difference,
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while for the non-convex case CANs might stagnate into a suboptimum or local area [20,21].
Authors in [22] discussed the successive application of MM and phase gradient algorithm
to synthesize the waveforms with low sidelobes. Additionally, authors adopted the limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) to solve a fourth order
polynomial formula and design unimodular sequences, but their ideas might incur invali-
dation for waveforms with large size [23]. Meanwhile, waveform optimization based on
simulated annealing and stochastic neighborhood searching mechanism have also been
presented, but these heuristic algorithms may be restricted to the modulus intricacy and
large size of the waveforms [24,25].

Note that, when discussing the non-convex optimization with random initialization,
these algorithms above would lead to a different terminus and only guarantee a local
convergence [26]. Especially, to design the random phase-coded waveforms, how to
tackle the random initialization for non-convex case has always been the key issue in
engineering. Parallel optimization based on swarm intelligence maybe a good choice to
improve the robustness. Unlike the optimization methods regarding each phase-coded unit,
the waveform sample-based projection optimization using FFT will make a difference. In
this paper, we use the idea of swarm particle intelligence [27–29] and combine alternating
projection and particle swarm intelligence together to improve the global exploiting. To
this end, our particle swarm-assisted projection optimization (PSAP) method is introduced
to design the waveforms with desirable range sidelobes. Firstly, the mathematical problem
is formulated to tackle the multiple non-cooperative targets or interference. Furthermore,
using the alternating direction idea, the original problem is divided into some triple-variable
ones considering different constraints. Then, the spectrum approximation in the sense of
F-norm can be transformed into multi-variable alternating optimization cases. Finally, with
the help of particle swarm intelligence, phase retrieval, learning factor and accelerated
projections, PSAP method and its accelerated version have been formulated.

The remainder of paper is organized as follows. In Section 2, the system model is
shown, and the formulated optimization problem for minimizing sidelobes is derived. In
Section 3, PSAP as a novel alternative optimization mechanism based on swarm intelligence
and FFT is presented. In Section 4, the performance of the proposed algorithms is evaluated
and a series of numerical examples are also provided. Finally, in Section 5, the concluding
remarks are provided.

2. The Signal Model and Problem Description

In this section, we discuss the range sidelobes masking effect from some strong RCS
scatters which might obscure small targets of interest (such as dot target or low RCS target),
and mainly focus on the waveform design for the static target detection in masking scenario
and ignore the Doppler effect. For general description, the pre-modulated transmitting
waveform in time domain has the discrete form of base band sequence with N code
elements, i.e., s= [s1 s2 . . . sN

]T . The received signal is down converted to base band
and undergoes the MF at the receiver [30]. The vector format of autocorrelation function
which can be regarded as the MF output at the zero Doppler shift, has been listed as follows

α(s) =
[
α−N+1(s) . . . α−1(s) α0(s) α1(s) . . . αN−1(s)

]T (1)

αn(s) =
N−n

∑
ñ=1

sñs∗ñ+n =α∗−n(s) (2)

As shown in [12], suppose that a strong point scatterer (or the interference) with echo
power σ2

t (q) exists in the q-th range cell, and a weak target of interest with echo power
σ2

t (r) exists in the r-th range cell, the noise plus range sidelobe interference for the r-th
range cell can be represented as

σ2
I (r) = Ω(N − 1− |q− r|)

∣∣σt(q)αq−r(s)/N
∣∣2 + σ2

n , (3)
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where Ω(n) =

{
1 n ≥ 0
0 n < 0

, σ2
n is the power of the thermal noise, and αq−r(s) denotes

the (q-r)-th lag of the aperiodic autocorrelation of (1). Then the target Signal power to
Interference plus Noise Ratio (i.e., SINR) can be expressed as

SINR =
σ2

t (r)
σ2

I (r)
==

σ2
t (r)

Ω(N − 1− |q− r|)
∣∣σt(q)αq−r(s)/N

∣∣2 + σ2
n

(4)

here, of all the variables in (4), αq−r(s) is the only one under the control of radar transmitter.
Despite the phase-coded waveform s with arbitrary amplitude, the CM waveform could

maximize the transmitter’s efficiency [13,16,31]. Let x =
[
x1 x2 . . . xN

]T ∈ CN×1 denote
CM phase-coded one with N discrete phase-coded units, i.e., xn = ejψn where ψn denotes the
n-th phase-unit extracted from [0, 2π]. (·)T, (·)∗ means the operation of transpose, complex

conjugate, respectively. Similarly, we use αn(x) =
N−n
∑

ñ=1
xñx∗ñ+n =α∗−n(x) to denote the range

sidelobes of MF output in lieu of αn(s) in (1) and (2). In modern electronic countermeasures
scenarios, range sidelobes units occupied by some powerful interference or extended-scatters
which mask the interesting target need to be suppressed [8,10,17]. Namely, local low range
sidelobes is more convenient for weak targets detection and anti-masking effect as discussed
in (3) and (4). Suppose that a powerful dot-scatter exists in the q-th range unit and inevitably
impacts the target detection of the r-th one. With the help of some prior information Rr, i.e.,
Rr =

{
±|n− q| : n ∈ Ẑr

}
\{N− 1,−N + 1} where Ẑr denotes the area with a foreseeable

target, we could further describe the range interval Rr to be suppressed. We use an indicating
vector
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x x
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= [z1, z2 . . . z2N]
T to formulate the area-mapping of these pre-suppressed range

sidelobes interval, i.e., zn = 1 when n ∈ Rr, and zn = 0 when n /∈ Rr. The classical weighted
ISL given some prior information has been discussed in [4,7,17], i.e.,

WISL(x) = min
x

2
N−1

∑
n=1

wn|αn(x)|2, wn ≥ 0 (5)

Borrowed the idea of (5), we denote {vn}2N
n=1 as the weight corresponding to each unit

in
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= [z1, z2 . . . z2N ]
T , i.e., vn = δ1 � 1 when zn = 1, and vn = 1 when zn = 0. We further

define x̃ as the desirable waveform with ideal local low sidelobes, i.e., lim
x→x̃

α(x̃) = v� α(x),
� denotes the Hadamard element-wise product. Let v denote the approximation vector
with v→ v� α(x) . To design waveform with desirable property, namely, we should make
α(x) and α(x̃) be more approximate. Here we use the norm-metric ‖α(x)− v‖2 to denote
the approximation level of them. Finally, the objective function can be formulated as

min
x
‖α(x)− α(x̃)‖2 = min

x
‖α(x)− v‖2 (6)

According to the “Parseval-type equality” in [17], i.e., ‖FCTx‖2 = ‖x‖2, the objective
function of (6) is equivalent to

min
x
‖FCTα(x)− FCTv‖2

(7)

FCTv = f̃� f̃
∗ ∈ <2N×1, FCTα(x) = f� f∗ ∈ <2N×1 (8)

where C denotes the extend or cutoff matrix with C =
[
IN×N 0N×N

]
, f̃ and f = FCTx

refers to the frequency spectrum of x̃ and the designing one, respectively. The DFT matrix
F ∈ C2N×2N is constituted by unity exponential factor, i.e., f̂H

k = [e−jwk . . . e−j2N·wk ]
with wk = 2πk/2N. Next, the optimization problem in (6) can be transformed into the
spectrum approximation as following
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min
x
‖(FCTx)� (FCTx)

∗ − f̃� f̃
∗‖

2
, min

x

2N
∑

k=1

∣∣∣∣∣
(∣∣∣(f̂H

k CTx
)∣∣∣2 −(√(f̂H

k CTv
))2

)∣∣∣∣∣
2

s.t. |xn| = 1, n = 1, 2, . . . , N

(9)

Note that the problem of (9) is a quartic function of {xn}N
n=1, using the auxiliary phase

vector φ = [φ1 φ2 . . . φ2N ]
T , (9) can be justified ‘almost equivalent’ to the following

quadratic function of {xn}N
n=1 [17], i.e.,

min
x,φ

2N

∑
k=1

∣∣∣∣√(f̂H
k CTv

)
· ejφk −

(
f̂H
k CTx

)∣∣∣∣2 (10)

and the ideal frequency spectrum vector f̃ can be further expressed as

f̃ =
(

FCTv
)1/2

� exp(jφ) (11)

As v ∈ C2N×1 → v�α(x) , (10) implies that once given x, the ideal v satisfies

min
v
‖v−v� α(x)‖2

s.t. |xn| = 1, n = 1, 2, . . . , N
(12)

namely, v , v �α(x), so that
√(

f̂H
k CTv

)
will be constant once given x, then (10) in the

vector format has

min
φ
‖
(

FCTv
)1/2

� exp(jφ)−
(

FCTx
)
‖

2

s.t.
{

v , v� α(x)
φn ∈ [0, 2π], n = 1, 2, . . . , 2N

(13)

For brevity, defining a novel operator diag(·) which rearranges the column vector to

be a square diagonal matrix, i.e.,
(

FCTv
)1/2

� exp(jφ) = diag(exp(jφ))
(

FCTv
)1/2

, and
the objective function (13) has

min
φ
‖diag(jφ)

(
FCTv

)1/2
− FCTx‖

2

s.t.
{

v , v� α(x)
φn ∈ [0, π], n = 1, 2, . . . , N

(14)

Similarly, given φ and v, the quadratic optimization problem of (10) has

min
x
‖
((

FCTv
)1/2

� exp(jφ)

)
− FCTx‖

2

s.t. |xn| = 1, n = 1, 2, . . . , N
(15)

Let J =
(

FCTv
)1/2

∈ <2N×1, then diag(exp(jφ))J = diag(J) exp(jφ), (14) can be
rewritten as

min
φ
‖diag(J) exp(jφ)− FCTx‖2

(16)

Meanwhile, diag(J) is also an invertible matrix, the estimated φ in (16) could be
given by

φ = ang
((

(diag(J))Hdiag(J)
)−1

(diag(J))HFCTx
)

(17)
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where ang(·)= im(ln(diag(·))) represents the phase extractor from its vector argument,
and im(·) denotes the imaginary component extraction operator. Similarly, recall “Parseval-
type equality” again, the objective function in (15) could be expressed as:

min
x
‖CFH

((
FCTv

)1/2
� exp(jφ)

)
− x‖

2

= ‖CFH
(

diag(exp(jφ))
(

FCTv
)1/2

)
− x‖

2

s.t. |xn| = 1, n = 1, 2, . . . , N

(18)

On account of CM property, we only retain the phase section of the estimated x of (18).
Then the designed waveform by the phase-retrieval operation of [20] has

x = exp
(

j · ang
(

CFH
(

diag(exp(jφ))
(

FCTv
)1/2

)))
(19)

3. The Proposed Particles Swarm Assisted Projection Framework

In recent years, CAN [4], RISAAP [5], PONLP [12], CD [15], WeCAN [17], and
ADMM [18] are all presented to deal with the Non-deterministic Polynomial-time hard
(NP-hard) problem. They have the common trait, i.e., iterative optimization mechanism.
Therein, each iteration of them requires to solve a non-convex problem under unimodular
constraint, no matter by virtue of handling the bisection gradient optimization or FFT-based
one. However, the initialized random phases where each phase unit is distributed in [0, 2π],
would incur a different terminus when using different random initialization. Namely, each
Monte-Carlo trial could obtain different solution and remain some local convergence. To
tackle these, we borrow the idea of parallel optimization to combine the particles swarm
intelligence and projection optimization together, where the novel particles projection
mechanism will avoid the local area in the statistical sense. Next, we present the PSAP
framework in lieu of the traditional evolution mechanism of PSO or DE [28,29], and thus
could enhance the global exploiting for non-convex phase-coded problem. The detailed
descriptions of PSAP have been listed as follows

Step 1. Formulate the waveform set rather than one single sequence, i.e.,
X = [x1. . . xm . . . xM] ∈ CM×N with xm = [xm(1). . . xm(n) xm(N)]

T ∈ CN×1. Note
that each sequence has xm(n) = ejψn , where ψn denotes the independent phase-coded
variables extracted from [0, 2π]. Additionally, the waveform set could also be initialized by
Frank or Barker sequence.

Step 2. Define a novel metric to assess the sidelobe performance of waveform in the
range interval Rl as

f itness(xm) =
1

num_Rr
∑

k∈Rr

αk(xm) (20)

where num_Rr denotes the number of pre-suppressed sidelobes units.
Step 3. Using (20) as the fitness function to evaluate each waveform xm of set X, and

select the best fitness function and its corresponding waveform pt.
Step 4. For the t-th iteration, select M̂ < M waveforms from waveform set X to

formulate the novel subset. Here we should update the subset by some rules that if the best
fitness function and its corresponding waveform have not been incorporated, then use it to
replace the worst one in current subset.

Step 5. For each waveform xm at the t-th iteration, utilize the oversampling FFT to

get xm →
_
f m , and then formulate the relaxing factor δ(xm), relational factor dm, and also

projection vector vm by using (22)~(24) respectively, as follows

_
f m = (Fv� α(xm))

(1/2) �
(

exp
(

j · ang
(

FCTxm

)))
(21)
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δ(xm) =

√√√√√√‖(Fv� α(xm))
(1/2) �

(
exp

(
j · ang

(
FCTxm

)))
− xm‖

‖
(

exp
(

j · ang
(

CTF
_
f m

)))
− xm‖

(22)

dm = δ(xm) ·
(

exp
(

j · ang
(

CTF
_
f m

))
− xm

)
(23)

vm = w · dm + c1 · rand · (ym − xm) + c2 · rand · (p− xm) (24)

where dm denotes the relational factor of the m-th waveform at the t-th iteration to the
t + 1-th iteration, rand denotes one random value of [0, 1], w ∈ [1, 1.5] represent the inertia
factor, c1 ∈ [0.5, 1] is the learning factor related to the best waveform ym which is selected
from initial iteration to the current iteration

{
x1

m . . . xt
m
}

. c2 ∈ [0, 0.5] represents the
learning factor related to the best waveform pt at the current t-th iteration.

Step 6. Use the multi-particles projection of (25)~(26) to achieve unimodular wave-
forms at the t + 1-th iteration, as follows

_
x m = xm + vm (25)

x̂m =
(

exp
(

j · ang
(
_
x m

)))
(26)

where x̂m with CM property has been obtained by the phase retrieval operation in (26).
Step 7. Consider the remaining subset, update them by

φm = ang

(
diag

(((
FCT(v� α(xm))

)1/2
)−1

)
FCTxm

)
(27)

x̂m = exp
(

j · ang
(

CFH
(

diag(exp(jφm))
(

FCT(v� α(xm))
)1/2

)))
(28)

Step 8. Merge the subset and remaining part, use the following selection rules to get
ym, i.e., ym = x̂m when f itness(x̂m) < f itness(xm), or not ym = xm, and select the best
fitness function and its corresponding waveform pt.

Step 9. Repeat step 3~8 until
∣∣ f itness(pt)− f itness(pt−1)

∣∣ < ε or num > iter_num,
then output pt. Otherwise, update t = t + 1 and continue iterating.

Furthermore, we could incorporate the gradient steepest idea into PSAP. The objective
function of (15) can be expressed as:

min
x

J(x) = ‖FCTx−
√∣∣∣FCTdiag(‡)α(x)

∣∣∣� ang
(̃

f
)
‖

2

(29)

Let
^
ψ = ang(̃f), then the two-variable optimization problem has

min
^
ψ,x

J
(

x,
^
ψ
)
= ‖FCTx−

√∣∣∣FCTdiag(‡)α(x)
∣∣∣�^

ψ‖
2

(30)

Given the latest iterative x,
^
ψ can be achieved by the follow gradient optimization,

and its gradient matrix has

∇ψ J(x) =

∂‖abs

(
F

[
x

0N×1

])
�exp(jang(FCTx))−

√
|FCTdiag(‡)α(x)|�^

ψ‖
2

∂
^
ψ

= j · diag
(

abs
(

FCTx
))

diag
(√∣∣∣FCTdiag(‡)α(x)

∣∣∣)^ψ)·(
exp

(
j
(

ang
(

FCTx
)
−

^
ψ
))
− exp

(
j
(^

ψ− ang
(

FCTx
))))

(31)
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∂2‖abs(FCTx)�exp(jang(FCTx))−
√
|FCTdiag(‡)α(x)|�^

ψ‖
2

∂
^
ψ∂

^
ψ

T

= diag
(

aba
(

FCTx
))

diag(v) · diag
(

exp
(

j
(

ang
(

FCTx
)
−

^
ψ
))

+ exp
(

j
(^

ψ− ang
(

FCTx
)))) (32)

Let (32) equal to 0, then
^
ψ has:

^
ψ = ang

(
FCTx

)
+ π · ξ (33)

where ξ ∈ Z, as known, only if ξ is the even value, the hessian matrix of (33) can be positive,

and (30) will get the minimum. Moreover, given
^
ψ, the phase vector of x has:

ang(x) = ang

(
CFH

(√∣∣∣FCTdiag(‡)α(x)
∣∣∣�^

ψ

))
+ π · ξ (34)

Finally, the detailed descriptions of particle swarm-assisted projection with optimizing
mechanism (named as PSAPOM) have been listed as follow:

Step 1~Step 3 are similar to PSAP.
Step 4. Define x(1) = pt, then calculate the gradient direction d0 = −g0 = −∇ψ J(x(1)),

then search the best length ϑ which satisfies

J
(

diag(exp(jϑdk))x
(k)
)
≥ J
(

diag(exp(jηdk))x
(k)
)

, ∀η ≥ 0 (35)

define x(k+1) = diag(exp(jϑdk))x(k), then

gk+1 = ∇ψ J
(

x(k+1)
)

(36)

dk+1 = −
(

gk+1 +
(
gk+1 − gk

)Tgk+1dk/‖gk‖
2
)

(37)

if
∣∣∣ f itness(x(k+1))− f itness(x(k))

∣∣∣ < 10−5 or k > 100, output the initiation pt = x(k+1);

Step 5. For the current iteration, select M̂ < M waveforms from set X to formulate
the novel subset. Here we should update the subset by some rules that if the best fitness
function and its corresponding waveform have not been incorporated, then use it to replace
the worst one in current subset.

Step 6. For each waveform xm of subset, utilize the oversampling FFT to get xm →
_
f m ,

and then formulate the relaxing factor δ(xm), relational factor dm, and also projection vector
vm by using (39)~(41) respectively, as follows

_
f m = (Fv�α(xm))

(1/2) �
(

exp
(

j · ang
(

FCTxm

)))
(38)

δ(xm) =

√√√√√√‖(Fv�α(xm))
(1/2) �

(
exp

(
j · ang

(
FCTxm

)))
− xm‖

‖
(

exp
(

j · ang
(

CFH
_
f m

)))
− xm‖

(39)

dm = δ(xm) ·
((

exp
(

j · ang
(

CFH
_
f m

)))
− xm

)
(40)

vm = w · dm + c1 · rand · (ym − xm) + c2 · rand · (pt − xm) (41)

where dm denotes the relational factor of the m-th waveform at the t-th iteration to the
t + 1-th iteration, rand denotes one random value in [0, 1], w ∈ [1, 1.5] represent the inertia
factor, c1 ∈ [0.5, 1] is the learning factor related to the best waveform ym which is chosen
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from initial iteration to the current iteration
{

x1
m . . . xt

m
}

. c2 ∈ [0, 0.5] represents the
learning factor related to the best waveform pt at the current t-th iteration.

Step 7. Use the multi-particles projection to achieve unimodular waveforms at t + 1-th iteration,

_
x m = xm + vm (42)

x̂m =
(

exp
(

j · ang
(
_
x m

)))
(43)

where x̂m with CM property has been obtained by the phase retrieval operation of (43).
Step 8. For the remaining subset, update them by

φm = ang

(
diag

(((
FCT(v� α(xm))

)1/2
)−1

)
FCTxm

)
(44)

x̂m = exp
(

j · ang
(

CFH
(

diag(exp(jφm))
(

FCT(v� α(xm))
)1/2

)))
(45)

Step 9. Merge the subset and the remaining part, use the following rules to get ym, i.e.,

i f fitness(x̂m) < fitness(xm)
ym = x̂m

else ym = xm

(46)

then select the best fitness function and its corresponding waveform pt.
Step 10. Repeat above-mentioned steps 5~9 until num > iter_num or∣∣ f itness(pt)− f itness(pt−1)

∣∣ < ε, then output pt. Otherwise, update t = t + 1 and con-
tinue iterating.

4. Simulations and Performance Analysis

Note that the non-convex optimization problem under different initialization is usually
providing a different terminus, and hard to obtain the global solution within polynomial
time [5,11,26]. For the phase-coded CM waveform design, selecting an effective technique
has always been the focus [12–14]. In this section, to further assess PSAP’s performance,
we firstly assume code length of waveform N = 150, then the initialized waveform set has

set0 =
[
x0

1 . . . x0
m . . . x0

M
]
∈ CN×M (47)

x0
m = [x0

m(1). . . x0
m(n) x0

m(N)]
T ∈ CN×1 (48)

where M = 20, xm(n) = ejψn . In addition, the inertia weight, individual learning factor as
well as group learning factor are set as w = 1.5, c1 = 0.5, and c2 = 0.5, respectively. The
iterations number iter_num is set as 2000, threshold value of

∣∣ f itness(pt)− f itness(pt−1)
∣∣

is set as ε = 10−10.
Next, we take the scenario of suppressing one single area for comparison, i.e., single

interval Rr= [2 : 30]. PSAP will be compared with WeCAN, ISAA, RISAAP, and PONLP,
by 20 Monte Carlo (MC) trials. Here, we define the averaging autocorrelation sidelobe level
(Aver-ACL) and local PSL (LPSL) in suppressed regions as the metric, as follows

Aver-ACL =
1

num_Rr
∑

k∈Rr

20 · log10
|αk(x)|
|α0(x)|

(dB) (49)

LPSL =20 · log10

(
max

(
|αk(x)|

N

))
(dB), k ∈ Rr (50)

for the sake of comparison, all methods or algorithms would be initialized by random
phase-coded sequence. Performance comparisons have been shown in Table 1 and Figure 1.
Simulations are performed on a PC with 3.40 GHz i7 CPU.
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Table 1. Performance comparison for suppressing single area sidelobes of different algorithms.

Algorithms
Single Area

Aver-ACL (dB) LPSL (dB) Time Consumption (s)

RISAAP −228.4560 −216.5490 0.14
ISAA −158.0292 −144.8821 0.35

WeCAN −48.5622 −35.6573 5.11
PONLP −139.6091 −130.2762 0.48
PSAP −333.4510 −321.8462 0.76
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In Table 1 and Figure 1, our proposed PSAP with parallel optimization mechanism has
achieved the best performance, PONLP with stochastic gradient optimization has achieved
only −139 dB of Aver-ACL and −130 dB of LPSL, while WeCAN achieves −48 dB of Aver-
ACL and−35 dB of LPSL. Moreover, ISAA and RISAAP using the mechanism of alternating
projection has obtained −228 dB and −158 dB of Aver-ACL, −216 dB and −144 dB of
LPSL, respectively. We need to declare that, with 20 · log10(·) as the mathematical metric
referring to [4,5,12,17], these methods or algorithms conduct their iterating or optimizing
with the same stop criteria/thresholds (iter_num is set as 2000, threshold value is set as
ε = 10−10). Here, the phenomenon with –228 dB or −333 dB may be unnecessary to have
so low sidelobe levels for practical engineering, but these low values in mathematical sense
would demonstrate some quickly converging or optimizing level of our PSAP framework
even for the future electronic countermeasure scenario.

To further discuss the computation complexity of them, here we mainly demonstrate
the number of iterations in convergence graph (as shown in Figure 2), and the CPU
time consumption in Table 1. In Figure 2, we use log

∣∣ f itness(xt)− f itness(xt−1)
∣∣ as the

convergence metric of the y-coordinate. Figure 2 has shown obvious converging difference.
PSAP uses the idea of particles swarm intelligence, i.e., M = 20, to establish thus cooperative
optimization (in CPU model), also occupies much more time than RISAAP, ISAA and
PONLP. WeCAN has consumed the longest time 5.11 s. By 20 MC trails, we can see
that PSAP has achieved the best robustness performance, which is own to the parallel
cooperative mechanism. In addition, these trails and simulations are all based on CPU;
when given the GPU condition, PSAP will occupy much less time than others. As seen
in Table 1 and Figure 2, WeCAN has slow convergence and PONLP with the steepest
descent gradient might stagnate into the local area. ISAA and RISAAP have oscillations in
Figure 2 which might attribute to the alternating projection between multi-local areas for
the non-convex case.
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Figure 2. Convergence comparison of different methods.

In addition, we also discuss the Aver-ACL and LPSL comparisons with different code
lengths N (i.e., 150, 200, 250, 300) which are shown in Figure 3. No matter N = 150, 200, 250,
and 300, our proposed PSAP could obtain the best Aver-ACL and LPSL in different code
lengths. Meanwhile, the results of these methods in Figure 3 have shown some similarity
that WeCAN might lose the performance for engineering application.

Meanwhile, we also consider the sidelobe suppression in multiple-area case, i.e.,
Rl= [2 : 10] ∪ [30 : 40]. Here, we assign different suppressing levels with δ1 = 0, δ2 = 10−4

where the former corresponds to the range sidelobe area next to the mainlobe, and the
second refers to the farther one. Note that, the interferences near the mainlobe would also
produce more effect than the farther one, and affect the detecting performance. Namely,
we arrange two suppressing areas with different weights to demonstrate the suppressing
levels for different non-cooperative targets. When discussing δ1 = 0, δ2 = 10−4, the former
δ1 = 0 with relative-low weights means more emphasis on the first area. In Table 2 and
Figure 4, we could see that the first area has achieved more excellent performance than the
second one, which is due to the weights of the different non-cooperative targets.
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Figure 3. Aver-ACL and LPSL comparison with different code lengths N. (a) Aver-ACL comparison
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PONLP, and PSAP.

Table 2. Performance comparison for suppressing multiple area sidelobes with different weights.

Algorithms

Multiple Area

Aver-ACL
in 1# Area (dB)

LPSL
in 1# Area (dB)

Aver-ACL
in 2# Area (dB)

LPSL
in 2# Area (dB)

Time
Consumption (s)

RISAAP −233.2183 −220.6892 −163.5196 −163.5110 0.16

ISAA −119.9062 −117.8060 −100.1328 −93.8627 0.34

WeCAN −61.2209 −47.9854 −41.1983 −34.9465 5.94

PONLP −147.6981 −141.6530 −116.1224 −112.5260 0.45

PSAP −336.3241 −329.4050 −169.5424 −169.5420 0.84
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In Table 2 with recorded time-consumption data, obviously, our proposed PSAP with
0.84 s has achieved the best Aver-ACL and LPSL using 20 MC trials, but with more time
than RISAAP (with 0.16 s), ISAA (with 0.34 s) and PONLP (with 0.45 s). Moreover, WeCAN
(with 5.94 s) has lost the performance and cost more time than others.

Moreover, we also consider the multiple-case, i.e., Rl= [2 : 10] ∪ [30 : 40] and arrange
two suppressing areas with same weights δ1 = 0, δ2= 0. In Table 3 and Figure 5, we could
see that these two areas have achieved same excellent performance. Table 3 has shown
same characteristics as shown in Tables 1 and 2. Our proposed PSAP has achieved the best
result by 20 MC trials. WeCAN has lost its performance.

Table 3. Performance comparison for suppressing multiple area sidelobes with same weights.

Algorithms
Multiple Area

Aver-ACL
in 1# Area (dB)

LPSL
in 1# Area (dB)

Aver-ACL
in 2# Area (dB)

LPSL
in 2# Area (dB)

RISAAP −238.1425 −232.5312 −236.9185 −235.2602

ISAA −137.7802 −134.5042 −134.4622 −131.5260

WeCAN −59.4995 −50.2199 −53.3124 −48.0641

PONLP −151.2146 −142.0220 −149.6574 −142.9440

PSAP −340.8439 −326.2900 −336.8021 −323.6540
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Figure 5. ACL comparison of suppressing sidelobes for multiple areas.

Note that the initialization of algorithms is indeed significant no matter for cyclic
algorithms or alternating projection. As the Gradient Descent (GD) mechanism could
accelerate the exploiting for local optimization, and we combine the GD and PSAP together
to formulate the PSAPOM and enhance the global robustness. To further assess the perfor-
mance of PSAPOM and PSAP, despite the random phase-coded sequence, here we assume
that these algorithms have been initialized by the Frank-coded or Barker-coded sequence,
respectively. For the length N = Ñ2 (N = 196), the Frank sequence is given by:

x(nÑ + ñ + 1) = ej2πnñ/Ñ ; n, ñ = 0, 1, 2 . . . , Ñ − 1 (51)

we also assume another waveform sequence (N = 169) formulated by the 13 Barker sequence.
As shown in Figure 6 and Table 4, for both the Frank sequence and Barker sequence,
PSAPOM also achieved the same performance as PSAP, but its time consumption, 0.4210 s
and 0.2502 s, was less than PSAP.
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Table 4. Algorithm (initialized by the Frank or Barker sequence) comparison for suppressing
range sidelobes.

Algorithms
Frank Sequence Barker Sequence

Aver-ACL in 1#
Area (dB)

Aver-ACL in 2#
Area (dB)

Aver-ACL in 1#
Area (dB)

Aver-ACL in 2#
Area (dB)

PSAPOM −321.1162 −320.7214 −326.3520 −323.2342

PSAP −321.4633 −321.2361 −325.7421 −323.1652

In these comparisons, we could draw a basic conclusion that our improved PSAP
algorithms have a remarkable performance compared to WeCAN, PONLP, ISAA, and
RISAAP, which will have a large influence on future practical applications. Moreover, given
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the sophisticated scenarios, i.e., the unimodular constraint and multiple suppressing areas,
our PSAP and PSAPOM have shown a more powerful convergence than these methods.
Meanwhile, our simulations have demonstrated that PSAP and PSAPOM have excellent
robustness and stability. We may attribute these traits to FFT leverage and swarm particle
intelligence due to alternating projection mechanisms.

5. Conclusions

In this paper, a PSAP framework (such as PSAP and PSAPOM) is introduced to
design a unimodular CM phase-coded waveform with local low range sidelobes. Therein,
PSAP with learning factor and particle-assisted projection could improve the convergence
in the non-convex case. Numerical trails and simulations have also provided plenty of
analysis to assess the waveforms generated by PSAP, WeCAN, ISAA, RISAAP, and PONLP.
Regarding statistical performance, PSAP and PSAPOM via swarm intelligence and parallel
optimization idea have achieved outstanding results. Additionally, in this paper, as we
only discussed the masking scenarios of detecting static targets despite the Doppler effect
of moving targets, in our further research, we will continue designing other phase-coded
waveforms considering the non-zero Doppler effect. Moreover, we will also use GPU to
accelerate the distributed parallel optimization.
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