Handwriting Number Recognition Based on Millimeter-wave Radar with Dual-view Feature Fusion Network
Published in , 2022
Against the epidemic background, the contactless human-computer interaction has great application prospects in the medical and health field. Among them, using gesture recognition method to realize non-contact instrument control is becoming the hotspot. To improve the robustness and accuracy, a method is proposed to realize the digital gesture recognition based on dual-view sequential feature fusion of millimeter-wave radars in this paper. Firstly, time series echo data of gesture numbers 0~9 from positive and side perspectives are collected synchronously. Secondly, datasets from different perspectives are preprocessed by implementing clutter suppression and data compression. Furthermore, the Attention embedded Dual View Fusion Network (ADVFNet) is constructed based on the intrinsic correlation of temporal features. Finally, using the collected dataset, the task of training network, fusing sequential feature, and recognizing digital gesture could be completed. Experimental results show that the recognition accuracy of proposed method is about 95%, which has faster network convergence and better model generalization ability compared with several existing methods. Moreover, the method could provide a new idea for future human-computer interaction of millimeter-wave radars. Key words: Millimeter-wave radar; Gesture number recognition; Dual-View Fusion Network (DVFNet); Attention mechanism